Growth diagrams, domino insertion and sign-imbalance

نویسنده

  • Thomas Lam
چکیده

We study some properties of domino insertion, focusing on aspects related to Fomin’s growth diagrams [Fom1, Fom2]. We give a self-contained proof of the semistandard domino-Schensted correspondence given by Shimozono and White [SW], bypassing the connections with mixed insertion entirely. The correspondence is extended to the case of a nonempty 2-core and we give two dual domino-Schensted correspondences. We use our results to settle Stanley’s ‘2’ conjecture on signimbalance [Sta] and to generalise the domino generating series of Kirillov, Lascoux, Leclerc and Thibon [KLLT] .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 7 SKEW DOMINO SCHENSTED ALGORITHM AND SIGN - IMBALANCE

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...

متن کامل

Skew Domino Schensted Algorithm and Sign-imbalance

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...

متن کامل

Skew Domino Schensted Algorithm

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...

متن کامل

Domino Fibonacci Tableaux

In 2001, Shimozono and White gave a description of the domino Schensted algorithm of Barbasch, Vogan, Garfinkle and van Leeuwen with the “color-to-spin” property, that is, the property that the total color of the permutation equals the sum of the spins of the domino tableaux. In this paper, we describe the poset of domino Fibonacci shapes, an isomorphic equivalent to Stanley’s Fibonacci lattice...

متن کامل

On Sjöstrand’s Skew Sign-imbalance Identity

The aim of this note is to give a quick derivation of Theorem 1 using the techniques developed in [1] and the skew domino Cauchy identity. Let Gλ/μ(X; q) = ∑ D q spin(D)xweight(D) be the spin-weight generating function of domino tableaux with shape λ/μ; see for example [1]. Here we will use the convention that spin(D) is equal to half the number of vertical dominoes in D. Though not stated expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 107  شماره 

صفحات  -

تاریخ انتشار 2004